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Diarylethene-capped gold nanoparticles were synthesized
by a self-assembled monolayer (SAM) technique and the photo-
chemical behavior was studied. The average diameter of the par-
ticles was determined to be 1.1 nm from TEM image. The syn-
thesized nanoparticles showed reversible photochromic
reactivity regardless of the presence of the surface plasmon
band.

Photochromic diarylethenes undergo reversible cyclization/
cycloreversion photoreactions upon alternate irradiation with
UV and visible light.1 Diarylethene is considered as a candidate
for molecular switching devices because the �-conjugated chain
lengths of the open- and closed-ring isomers are significantly
different.2 For the realization of the molecular scale photonics
or electronics,3 metal-molecule junction is essential. SAM on
gold surface is one of the robust techniques to make covalent
metal–organic bonds.4 Diarylethene-capped gold nanoparticles
can work as a junction of �-conjugated organic molecule and
electroconductive metal particle. Herein we would like to report
the synthesis of diarylethene-capped gold nanoparticles and the
photochemical behavior of the nanoparticles.

We prepared diarylethene 1a. Diarylethene 1a has one ter-
minal thiol group and a pentamethylene alkyl chain is introduced
to separate the diarylethene and the gold nanoparticle. The syn-
thesis of 1a was performed via phenol-terminated diarylethene.
The structure of thiol 1a was confirmed by NMR, high-resolu-
tion mass spectroscopy and elemental analysis.5

Gold nanoparticles capped with thiol 1a (1a-Au) were syn-
thesized as follows.6 A solution of hydrogen tetrachloroaura-
te(III) hydrate in water was added to a solution of tetraoctylam-
monium bromide in toluene. A solution of thiol 1a in toluene
was added to the mixture. Then a solution of sodium borohy-
dride in water was added to the mixture. After stirring, organic

layer was separated and concentrated. The toluene solution of
the residue was added to ethanol and centrifuged. The precipita-
tion was collected, redissolved in toluene and ethanol, sonicated,
and centrifuged. This cycle was repeated three times and finally
dried in vacuo. 1a-Au was obtained as a black powder.7

IR measurement of 1a and 1a-Au was carried out. Both
spectra were basically similar. In the region where only the di-
arylethene has signals (1500–1700 cm�1), the peak positions
are exactly the same. In the C–H stretching region, the peak be-
came sharp with incorporation in the gold nanoparticle. The peak
positions (2921 and 2851 cm�1) suggested that the alkyl chain
adopts trans conformation.8

Figure 1a shows the transmission electron micrograph
(TEM) image of 1a-Au. The particles are spherical and two-
dimensionally dispersed. Figure 1b shows the histogram of the
diameter of the nanoparticles. The average diameter of 1a-Au
was 1:1� 0:2 nm. From the average diameter and the data of el-
emental analysis, the number of molecules attached to one Au
nanoparticle was estimated to be around 15.

Figure 2a shows absorption spectra of 1 along with photo-
chromic reactions in toluene. Upon irradiation with 313-nm
light, 1a underwent a photochromic reaction. The colorless solu-
tion of 1a became blue-purple and the absorption maximum was
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Figure 1. (a) TEM image of 1a-Au (125 kV). Sample was
placed on a carbon-coated copper grid. (b) Histogram of the
diameter of the nanoparticles.
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Scheme 1. Photochromism of thiol 1 and schematic drawing of
1a-Au.
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observed at 578 nm. The color change is due to the generation of
the closed-ring isomer 1b. The conversion under irradiation with
313-nm light was 87%. Upon irradiation with 578-nm light the
closed-ring isomer 1b returned to the open-ring isomer 1a and
the blue-purple solution became colorless.

Toluene solutions of 1-Au also showed photochromic reac-
tivity by irradiation with 313 and 578 nm lights (Figure 2b). The
absorption spectra of 1a-Au showed surface plasmon band
around 520 nm. Despite the existence of the absorption in visible
region, the photochromic reactions was not prohibited.9 Diaryl-
ethenes are known to undergo a cyclization reaction in less than
10 ps.10 It is also reported the energy transfer efficiency is de-
creased in smaller size particles.11 The fast reaction and small
particle size favor the photocyclization reaction. The absorption
maximum of 1b-Au was estimated from the difference spectrum
before and after irradiation. The absorption maximum was
578 nm, indicating that the origin of the color is the closed-ring
isomer 1b.

In conclusion we have prepared gold nanoparticles covered
with photochromic diarylethenes. The nanoparticles underwent
photochromic reactions in spite of the existence of the Au sur-
face plasmon absorption. The effects of the metal-chromophore

distance and the size of the nanoparticle on the photoreactivity
are under investigation.
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Figure 2. (a) Absorption spectral change of 1 in toluene: open-
ring isomer (dashed line); closed-ring isomer (solid line); in the
photostationary state under irradiation with 313-nm light (dotted
line). (b) Absorption spectral change of 1-Au in toluene: open-
ring isomer (dashed line); in the photostationary state under irra-
diation with 313-nm light (solid line).
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